탄소중립은 더 이상 대기업만의 과제가 아니다. 정부와 글로벌 공급망이 ESG 경영을 요구하면서, 중소기업도 탄소 배출을 측정하고 관리해야 하는 시대가 되었다. 그러나 인력과 예산이 부족한 중소기업에게 수작업 기반의 탄소 회계는 큰 부담이다. 이런 현실 속에서 AI 기반 탄소관리 시스템이 새로운 해결책으로 떠오르고 있다. AI 시스템은 생산 공정, 전력 사용, 물류 이동 등에서 자동으로 데이터를 수집해 탄소 배출량을 계산한다. 복잡한 엑셀 정리나 전문가 의존 없이도, 실시간으로 배출 현황을 시각화하고 목표 대비 감축률을 확인할 수 있다. 일부 솔루션은 IoT 센서와 연동되어 설비별 에너지 사용을 분석하고, 낭비 요인을 찾아내는 기능도 제공한다. 특히 AI는 단순한 모니터링을 넘어 예측 분석과 감축 전략 제안까지 가능하다. 예를 들어, 전력 피크 시간대를 예측해 에너지 사용을 분산시키거나, 원자재 운송 경로를 최적화하여 탄소 배출을 줄이는 방안을 자동으로 제시한다. 이러한 시스템을 도입한 기업들은 전력비 절감과 ESG 인증 대응 두 가지 효과를 동시에 얻고 있다. 중소기업이 AI 탄소관리 시스템을 구축하려면, 먼저 데이터 수집 환경을 표준화하고, 정부의 녹색전환
탄소중립은 더 이상 선택이 아닌 필수가 되었다. 세계 각국이 온실가스 배출을 줄이기 위해 노력하는 가운데, 인공지능(AI)은 새로운 해결책으로 떠오르고 있다. 과거에는 환경 보호와 기술 발전이 서로 충돌하는 목표로 여겨졌지만, 이제 AI는 효율과 지속가능성을 동시에 추구하는 ‘녹색 혁신의 동반자’가 되고 있다. 대표적인 사례로는 스마트팩토리의 에너지 최적화가 있다. AI는 생산 설비의 센서 데이터를 분석해 불필요한 전력 사용을 줄이고, 공정별 에너지 효율을 실시간으로 조정한다. 또 다른 예로 구글의 데이터센터는 AI 제어 시스템을 통해 냉각 효율을 개선해 전력 사용을 30% 이상 절감했다. 마이크로소프트는 AI 기반 예측 모델로 재생에너지 발전량을 예측해 탄소 배출을 최소화하고 있다. 농업 분야에서도 AI는 기후 데이터 분석을 통해 비료 사용량을 줄이고, 탄소 흡수량이 높은 작물 재배 전략을 제시한다. 또한, 기후테크 스타트업들은 AI를 활용해 탄소배출 추적 플랫폼을 개발하며, 기업의 탄소 회계와 감축 전략 수립을 돕고 있다. 결국 탄소중립을 향한 여정에서 AI는 단순한 기술이 아니라, 데이터 기반의 환경 의사결정 도구로 자리 잡고 있다. 앞으로의 과제는 A