2016년 이세돌 9단을 꺾은 알파고는 바둑의 모든 수를 외워서 둔 것이 아니다. 스스로 수만 번의 대국을 두며 이기는 법을 깨우쳤다. 이런 독특한 학습 방식을 데이터 과학에서는 '강화학습'이라고 부른다. 원리는 우리가 집에서 강아지를 훈련시키는 것과 매우 비슷하다. 강아지가 "손!"이라는 말에 맞춰 손을 내밀면 간식(당근)을 주고, 엉뚱한 행동을 하면 간식을 주지 않거나 가볍게 꾸짖는(채찍) 방식이다. 인공지능도 마찬가지다. 컴퓨터에게 슈퍼마리오 같은 게임을 시킨다고 가정해 보자. 처음에는 AI가 아무것도 모르기 때문에 제자리에서 점프만 하거나 곧바로 적에게 부딪혀 게임이 끝난다. 이때 개발자는 '점수 획득'이나 '레벨 통과'라는 보상을 설정하고, '캐릭터 사망'이나 '시간 초과'라는 벌칙을 준다. AI는 처음에는 무작위로 버튼을 마구 눌러보지만, 우연히 앞으로 갔더니 점수가 오르는 것을 발견하면 그 행동을 더 자주 하려고 한다. 반대로 낭떠러지로 떨어져 점수가 깎이면 그 행동을 피하게 된다. 이 과정에서 가장 중요한 핵심은 '시행착오'이다. 강화학습 AI는 수백만 번 실패하고 넘어지면서, 보상을 최대화할 수 있는 최적의 움직임을 스스로 찾아낸다. 사람이
우리가 스마트폰으로 찍은 멋진 풍경 사진을 친구에게 보낼 때, 컴퓨터는 그 사진을 어떻게 이해할까? 컴퓨터는 우리처럼 "와, 하늘이 정말 파랗다!"라고 감탄하지 않는다. 대신 그 사진을 수백만 개의 작은 점, 즉 '픽셀(Pixel)'로 잘게 쪼갠 뒤 엄청난 숫자의 나열로 받아들인다. 이미지를 확대하고 또 확대하면 네모난 작은 타일들이 모자이크처럼 보이는데, 이것 하나하나가 바로 픽셀이다. 각 픽셀은 고유한 색상 정보를 담고 있다. 이 색상은 빛의 삼원색인 빨강(Red), 초록(Green), 파랑(Blue)의 조합, 즉 'RGB' 값으로 표현된다. 각 색깔은 보통 0부터 255까지의 숫자로 나타내는데, (255, 0, 0)은 빨간색, (0, 0, 0)은 검은색, (255, 255, 255)는 흰색이 되는 식이다. 결국 컴퓨터에게 '사진'이란 가로세로로 늘어선 거대한 숫자판(행렬)일 뿐이다. 인공지능이 강아지와 고양이 사진을 구별하는 것도 바로 이 숫자 패턴을 분석하는 것이다. 강아지 사진의 픽셀 숫자 배열과 고양이 사진의 배열에 미묘한 통계적 차이가 있음을 수학적으로 찾아내는 것이다. 우리가 보는 화려한 디지털 세상은 사실 0부터 255 사이의 숫자들이 촘촘하
요즘 챗GPT와 같은 인공지능이 사람처럼 자연스럽게 대화하는 것을 보면 마치 안에 사람이 들어있는 것 같은 착각이 든다. 하지만 이 기술의 핵심은 마법이나 자아가 아니라 철저히 수학적인 확률 계산이다. 이를 전문 용어로 거대 언어 모델이라고 부른다. AI가 글을 쓰는 방식은 친구와 빈칸 채우기 놀이를 하는 것과 매우 비슷하다. 예를 들어 "오늘 급식 메뉴는 정말 [ ? ]"라는 문장이 있다고 해보자. 빈칸에 들어갈 말로 맛있다, 맛없다, 매웠다 등은 확률이 아주 높지만, 갑자기 비행기다, 책상이다 같은 단어가 올 확률은 거의 0에 가깝다. AI는 인터넷에 있는 수억 개의 문장 데이터를 학습하여, 특정 단어 뒤에 어떤 단어가 따라오는 것이 가장 자연스러운지 통계적으로 계산해 둔 상태다. 우리가 질문을 던지면 AI는 그 질문의 문맥을 파악한 뒤, 다음에 올 수 있는 수만 가지 단어 중에서 가장 확률이 높은 단어를 하나씩 선택해서 이어 붙인다. 이것은 마치 수많은 단어 카드를 펼쳐 놓고, 현재 상황에 가장 알맞은 카드를 주사위 굴리듯 확률에 따라 뽑는 과정의 연속이다. 즉, AI는 문장을 한 번에 완성하는 것이 아니라, 앞 단어를 보고 뒷 단어를 예측하는 과정을
"우리 반 학생들의 평균 용돈은 얼마일까?"라는 질문을 받으면 우리는 자연스럽게 모든 학생의 용돈을 더한 뒤 학생 수로 나누는 '평균'을 떠올린다. 이처럼 평균은 대푯값으로 가장 널리 쓰이지만, 때로는 현실을 완전히 왜곡하는 거짓말쟁이가 될 수도 있다. 상상을 한 번 해보자. 평범한 우리 교실에 갑자기 세계적인 부자인 빌 게이츠가 전학을 왔다. 그리고 우리 반 학생들의 '평균 재산'을 다시 계산해 본다. 아마도 우리 반 학생 모두가 억만장자인 것처럼 평균값이 치솟을 것이다. 하지만 실제로 내 주머니 사정이 나아진 것은 아니다. 빌 게이츠라는 극단적으로 큰 값(이상치) 하나가 전체 평균을 엉뚱한 방향으로 끌고 갔기 때문이다. 이럴 때 필요한 것이 바로 '중앙값'이다. 학생들을 재산 순서대로 줄 세웠을 때, 정확히 한가운데에 있는 학생의 재산이 바로 중앙값이다. 빌 게이츠가 아무리 부자여도 그는 맨 끝에 줄을 서게 될 뿐, 가운데에 있는 평범한 학생의 값은 변하지 않는다. 따라서 소득이나 집값처럼 격차가 큰 데이터를 다룰 때는 평균보다 중앙값이 훨씬 더 정확한 현실을 보여준다. 데이터 분석에서는 어떤 값을 대푯값으로 쓸지 결정하는 것이 매우 중요하다. 뉴스에서
주말에 스마트폰으로 영상 하나를 클릭했을 뿐인데, 정신을 차려보니 서너 시간이 훌쩍 지나간 경험이 누구나 한 번쯤은 있을 것이다. 내가 좋아할 만한 영상을 귀신같이 찾아내 계속해서 보여주는 이 마법 같은 기술의 정체는 바로 '추천 알고리즘'이다. 도대체 컴퓨터 프로그램이 어떻게 나보다 내 취향을 더 잘 알고 있는 것일까. 가장 대표적인 원리는 '비슷한 취향을 가진 사람들을 연결하는 것'이다. 이를 데이터 과학 용어로 '협업 필터링'이라고 부른다. 원리는 간단하다. 만약 학생 A와 학생 B가 평소에 비슷한 게임 영상을 즐겨 봤다고 가정해 보자. 그런데 학생 B가 최근에 새로 나온 요리 예능 영상을 아주 재미있게 끝까지 시청했다. 그러면 알고리즘은 A와 B의 취향 패턴이 비슷하다는 것을 근거로, A에게도 그 요리 영상을 슬며시 추천 목록에 띄운다. 나와 비슷한 행동 패턴을 보인 수만 명의 데이터를 분석해, 내가 좋아할 확률이 높은 미지의 콘텐츠를 골라내는 방식이다. 하지만 단순히 어떤 영상을 클릭했는지만 보는 것은 아니다. 알고리즘은 훨씬 더 정교한 데이터를 수집한다. 영상을 클릭하고 나서 10초 만에 껐는지 아니면 끝까지 시청했는지, 영상을 보다가 잠시 멈췄는
요즘 우리는 '빅데이터'라는 말을 매일 듣는다. 수천만 명의 구매 기록이나 검색어 순위 같은 방대한 데이터가 세상을 바꾼다고 한다. 하지만 거대한 데이터의 파도 속에서 정작 중요한 단서를 놓치는 경우가 있다. 이때 필요한 것이 바로 '스몰 데이터'이다. 빅데이터가 '거대한 숲'을 보여준다면, 스몰 데이터는 '나무 한 그루'의 상태를 자세히 보여주는 돋보기와 같다. 빅데이터는 우리에게 '무엇'이 일어났는지 알려준다. 예를 들어 특정 운동화의 판매량이 갑자기 줄었다는 사실을 알려주는 식이다. 하지만 '왜' 줄었는지는 명확히 말해주지 않는다. 이때 데이터 분석가는 고객의 일상을 직접 관찰하는 스몰 데이터를 수집한다. 관찰 결과, 운동화 끈이 너무 잘 풀려서 불편해하는 고객의 사소한 행동을 발견할 수 있다. 이 작은 단서 하나가 디자인을 수정하고 다시 판매량을 올리는 핵심 열쇠가 된다. 실제로 유명한 레고(LEGO) 사도 한때 위기를 겪었으나, 아이들이 낡은 운동화를 자랑스러워하는 모습이라는 스몰 데이터에서 힌트를 얻었다. 아이들은 어려운 도전을 극복하고 성취감을 느끼길 원한다는 사실을 깨닫고, 더 복잡하고 정교한 블록을 만들어 재기에 성공했다. 이처럼 숫자의 양이
데이터를 다루다 보면 두 개의 숫자가 마치 친구처럼 함께 움직이는 것을 자주 보게 된다. 하나가 늘면 다른 하나도 늘고, 하나가 줄면 다른 하나도 줄어드는 현상이다. 우리는 이것을 '상관관계'가 있다고 말한다. 예를 들어, 여름철 아이스크림 판매량이 늘어나면 수영장에서의 익사 사고도 늘어나는 경향을 보인다. 그렇다면 아이스크림이 익사 사고의 원인일까? 물론 아니다. 여기서 우리가 주의해야 할 중요한 개념이 바로 '인과관계'이다. 인과관계는 한 사건이 다른 사건의 직접적인 원인이 될 때 성립한다. 아이스크림 판매량과 익사 사고의 상관관계는 '더위'라는 제3의 요인 때문에 발생한다. 날씨가 더워지면 사람들이 아이스크림을 더 많이 먹고, 동시에 물놀이도 더 많이 하게 되므로 익사 사고의 위험도 자연스레 증가하는 것이다. 아이스크림이 직접적으로 익사 사고를 유발하는 것이 아니며, 이 둘은 단지 '상관'만 있을 뿐 '인과' 관계는 없는 것이다. 데이터 분석에서 이러한 상관관계와 인과관계를 명확히 구분하는 것은 매우 중요하다. 만약 상관관계만을 보고 인과관계로 오해한다면, 잘못된 정책이나 사업 결정을 내릴 수 있다. 기업이 아이스크림 판매를 줄여 익사 사고를 막으려 한
우리는 흔히 평균이나 표준편차 같은 통계 수치만 확인하면 데이터를 완벽하게 이해했다고 착각하기 쉽다. 하지만 숫자가 보여주는 요약 정보 뒤에는 전혀 예상하지 못한 반전이 숨어 있기도 한다. 이를 가장 명확하게 보여주는 사례가 바로 앤스컴의 4인조 데이터이다. 통계학자 프랜시스 앤스컴이 고안한 이 자료는 네 가지의 서로 다른 데이터 집합으로 구성되어 있다. 놀라운 점은 네 집합의 평균, 분산, 상관계수 등 모든 통계 수치가 소수점 아래 자리까지 거의 일치한다는 사실이다. 만약 우리가 그래프를 그려보지 않고 숫자만 보고 받았다면, 이 네 가지 데이터가 모두 비슷한 성질을 가졌을 것이라고 판단했을 것이다. 그러나 막상 이 데이터들을 평면 위에 점으로 찍어 시각화해보면 완전히 다른 모습이 나타난다. 첫 번째 집합은 평범한 선형 관계를 보이지만, 다른 집합들은 곡선 형태를 띠거나 특정 지점에만 데이터가 몰려 있는 등 전혀 다른 패턴을 가진다. 심지어 한두 개의 튀는 데이터 때문에 전체 통계치가 왜곡된 경우도 발견된다. 이는 시각화 과정 없이 숫자만으로 의사결정을 내리는 것이 얼마나 위험한지를 단적으로 보여주는 예시이다. 데이터 시각화는 단순히 정보를 예쁘게 꾸미는 작
우리는 매일 뉴스나 인터넷 기사를 통해 수많은 그래프를 접한다. 복잡한 숫자 더미보다 한 장의 그래프가 정보를 훨씬 빠르고 명확하게 전달하기 때문이다. 하지만 시각화된 자료가 언제나 진실만을 말하는 것은 아니다. 때로는 제작자의 의도에 따라 데이터가 실제보다 과장되거나 축소되어 전달되기도 한다. 이것을 이른바 나쁜 시각화라고 부른다. 가장 대표적인 왜곡 수법은 그래프의 세로축을 조작하는 것이다. 보통 막대그래프는 수치의 바닥인 0에서부터 시작해야 한다. 그러나 특정 수치를 강조하고 싶은 제작자가 축의 시작점을 0이 아닌 높은 숫자로 설정하면, 아주 작은 차이도 마치 엄청난 격차가 벌어진 것처럼 보이게 된다. 반대로 수치의 변화를 숨기고 싶을 때는 축의 간격을 매우 넓게 설정하여 완만한 직선처럼 보이게 만들기도 한다. 또한 3차원 입체 그래프를 사용하는 경우에도 착시 현상이 발생한다. 원형 그래프를 비스듬하게 눕히면 앞쪽에 위치한 조각이 실제 비율보다 훨씬 크게 느껴지는 효과가 나타난다. 이는 독자가 데이터의 실제 크기를 비교하는 데 혼란을 준다. 단순히 멋을 내기 위해 선택한 디자인 요소가 정보의 본질을 가리는 셈이다. 착한 시각화란 단순히 화려한 그림을 그
AI 기술이 세계 경제의 새로운 성장축으로 자리 잡은 지금, 한국의 스타트업 생태계도 빠르게 AI 중심으로 재편되고 있다. 그러나 단순히 해외 기술을 모방하거나 알고리즘을 도입하는 것만으로는 성공할 수 없다. 한국형 AI 창업의 핵심은 데이터, 인재, 네트워크를 중심으로 한 실행 전략에 있다. 첫째, 데이터 경쟁력 확보가 가장 중요하다. AI는 학습 데이터의 품질에 따라 성과가 달라진다. 한국의 중소 스타트업은 공공데이터, 산업별 협회 데이터, 또는 고객 행동 데이터를 연계해 ‘도메인 특화형 AI’를 개발해야 한다. 단순한 기술 개발보다 현장 문제 해결에 초점을 맞춘 데이터 설계가 필요하다. 둘째, 융합형 인재 확보가 관건이다. 기술 개발자뿐 아니라 비즈니스, 디자인, 마케팅 등 다양한 분야의 전문가가 협업해야 한다. 특히 ‘AI 이해 + 산업 지식’을 겸비한 인재는 한국형 AI 창업의 핵심 동력이다. 이를 위해 정부와 대학은 산학협력 기반의 실무형 AI 교육을 강화할 필요가 있다. 셋째, 네트워크와 정책 연계가 성공의 열쇠다. AI 스타트업은 중진공, 기술보증기금, 창업진흥원 등 공공 지원기관과의 협력으로 초기 자금과 기술 검증을 동시에 확보할 수 있다.
AI 기술을 중심으로 한 스타트업들은 전통적인 산업 구조를 바꾸며 빠르게 성장하고 있다. 이들의 성공은 단순히 ‘AI를 활용했다’는 점이 아니라, 기술을 통해 현실의 문제를 정확히 해결했다는 데 있다. 대표적인 사례로는 OpenAI를 들 수 있다. 생성형 AI ‘ChatGPT’를 통해 개인과 기업의 일상적 생산성을 혁신하며, 대규모 사용자 기반을 단기간에 확보했다. 그 성공의 핵심은 기술력보다 ‘누구나 쉽게 쓸 수 있는 인터페이스’를 만든 사용자 중심 전략이었다. 한국에서도 AI 스타트업의 성장은 두드러진다. 스캐터랩은 감정 인식 AI를 통해 사용자 맞춤형 대화 서비스를 제공하며, 감성 데이터를 활용한 새로운 시장을 개척했다. 마음AI는 상담, 교육, 의료 등 인간 감정을 다루는 영역에서 AI 챗봇을 상용화해 기업 고객을 확대하고 있다. 또한 제조 분야의 원프레딕트(OnePredict)는 AI 예지보전 기술로 설비 고장을 사전에 예측해 공장 가동 효율을 높이는 데 성공했다. 이들 기업의 공통점은 세 가지다. 첫째, 명확한 문제 정의로 시장의 빈틈을 정확히 공략했다. 둘째, AI 기술을 단순 도구가 아닌 비즈니스의 핵심 자산으로 삼았다. 셋째, 데이터를 축적하
인공지능(AI)은 이제 스타트업의 선택이 아니라 필수 전략이 되었다. 과거에는 자본과 인력이 부족한 창업 기업이 대기업과 경쟁하기 어려웠지만, AI 기술은 그 격차를 빠르게 줄이고 있다. 아이디어를 실현하기 위한 시제품 제작, 마케팅, 고객 분석 등 거의 모든 창업 과정에 AI가 개입하면서 ‘소수 정예 기업’도 고효율로 성장할 수 있는 환경이 만들어졌다. 예를 들어, AI 기반 디자인 도구는 개발자 없이도 제품 프로토타입을 제작할 수 있게 해주고, 생성형 AI는 마케팅 콘텐츠를 자동으로 생성해 홍보비를 줄인다. 고객 데이터 분석 AI는 시장 반응을 예측해 제품 개선 방향을 제시하며, 투자 유치 단계에서는 AI가 사업계획서와 재무 예측 모델을 자동 생성하기도 한다. 즉, 창업 전 과정이 데이터 중심으로 재편되고 있는 것이다. AI는 또한 창업의 장벽을 낮추고 있다. 클라우드 AI 플랫폼을 통해 누구나 고급 알고리즘을 저비용으로 사용할 수 있고, 정부와 민간 투자기관은 AI 스타트업 전용 펀드와 육성 프로그램을 확대하고 있다. 이로써 기술 기반 스타트업의 생태계는 점점 더 다양하고 민첩하게 진화하고 있다. 결국 AI 시대의 창업은 ‘많이 하는 것’이 아니라 ‘스
탄소중립은 더 이상 대기업만의 과제가 아니다. 정부와 글로벌 공급망이 ESG 경영을 요구하면서, 중소기업도 탄소 배출을 측정하고 관리해야 하는 시대가 되었다. 그러나 인력과 예산이 부족한 중소기업에게 수작업 기반의 탄소 회계는 큰 부담이다. 이런 현실 속에서 AI 기반 탄소관리 시스템이 새로운 해결책으로 떠오르고 있다. AI 시스템은 생산 공정, 전력 사용, 물류 이동 등에서 자동으로 데이터를 수집해 탄소 배출량을 계산한다. 복잡한 엑셀 정리나 전문가 의존 없이도, 실시간으로 배출 현황을 시각화하고 목표 대비 감축률을 확인할 수 있다. 일부 솔루션은 IoT 센서와 연동되어 설비별 에너지 사용을 분석하고, 낭비 요인을 찾아내는 기능도 제공한다. 특히 AI는 단순한 모니터링을 넘어 예측 분석과 감축 전략 제안까지 가능하다. 예를 들어, 전력 피크 시간대를 예측해 에너지 사용을 분산시키거나, 원자재 운송 경로를 최적화하여 탄소 배출을 줄이는 방안을 자동으로 제시한다. 이러한 시스템을 도입한 기업들은 전력비 절감과 ESG 인증 대응 두 가지 효과를 동시에 얻고 있다. 중소기업이 AI 탄소관리 시스템을 구축하려면, 먼저 데이터 수집 환경을 표준화하고, 정부의 녹색전환
ESG(환경, 사회, 지배구조) 경영은 이제 글로벌 기업의 필수 과제가 되었다. 그중에서도 탄소 회계(Carbon Accounting)는 기업이 환경적 책임을 수치로 증명하는 핵심 지표로 자리 잡고 있다. 문제는 이 과정이 복잡하고, 수많은 데이터를 수집, 분석해야 한다는 점이다. 이러한 한계를 해결하기 위해 인공지능(AI)이 도입되고 있다. AI는 생산 설비, 물류, 전력 사용, 원자재 조달 등에서 발생하는 데이터를 실시간으로 수집해 탄소 배출량을 자동 계산한다. 기존에는 사람이 수작업으로 관리하던 데이터를 AI가 빠르게 통합, 분석함으로써, 탄소 배출의 ‘가시화’가 가능해졌다. 예를 들어 글로벌 제조기업들은 AI 기반 탄소 관리 플랫폼을 도입해 공정별 배출량을 자동 추적하고, 목표 대비 실적을 실시간으로 모니터링한다. 이러한 AI 기반 탄소 회계는 단순한 효율 개선을 넘어 ESG 경영의 핵심 인프라로 발전하고 있다. AI는 기업의 ESG 보고서 작성, 공시 데이터 검증, 리스크 예측 등에도 활용되어, 투명하고 신뢰할 수 있는 지속가능 경영 체계를 지원한다. 또한, AI 분석 결과를 통해 탄소 감축이 필요한 공정이나 공급망 구간을 정확히 찾아내면서 비용 절
탄소중립은 더 이상 선택이 아닌 필수가 되었다. 세계 각국이 온실가스 배출을 줄이기 위해 노력하는 가운데, 인공지능(AI)은 새로운 해결책으로 떠오르고 있다. 과거에는 환경 보호와 기술 발전이 서로 충돌하는 목표로 여겨졌지만, 이제 AI는 효율과 지속가능성을 동시에 추구하는 ‘녹색 혁신의 동반자’가 되고 있다. 대표적인 사례로는 스마트팩토리의 에너지 최적화가 있다. AI는 생산 설비의 센서 데이터를 분석해 불필요한 전력 사용을 줄이고, 공정별 에너지 효율을 실시간으로 조정한다. 또 다른 예로 구글의 데이터센터는 AI 제어 시스템을 통해 냉각 효율을 개선해 전력 사용을 30% 이상 절감했다. 마이크로소프트는 AI 기반 예측 모델로 재생에너지 발전량을 예측해 탄소 배출을 최소화하고 있다. 농업 분야에서도 AI는 기후 데이터 분석을 통해 비료 사용량을 줄이고, 탄소 흡수량이 높은 작물 재배 전략을 제시한다. 또한, 기후테크 스타트업들은 AI를 활용해 탄소배출 추적 플랫폼을 개발하며, 기업의 탄소 회계와 감축 전략 수립을 돕고 있다. 결국 탄소중립을 향한 여정에서 AI는 단순한 기술이 아니라, 데이터 기반의 환경 의사결정 도구로 자리 잡고 있다. 앞으로의 과제는 A